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Taken from a document wri�en originally in English.

The programming of billions of processors embedded in all our
devices, which must take into account devices that are very cheap
and poorly secured, that require for instance the implementation of
weak cryptographic algorithm, is a challenge...

Translation
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Weak Cryptography?

Weak , Lightweight

What is lightweight (symmetric) cryptography?
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It is vast (1/2)

Stream C. Block C. Hash F. Auth. C. MAC Total

Academia 14 50 10 10 2 86
Proprietary 17 5 0 0 1 23
Government 1 5 0 0 0 6

Total 32 60 10 10 3 115
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It is vast (2/2)

Several sca�ered
national/international standards,
none chosen a�er a competition
(apart from the AES).
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Outline

Goal of this Talk
We will look at several “lightweight” algorithms and see what they can tell
us about lightweightness.

1 A5-GCM-1 and A5-GCM-2 What not to do

2 Plantlet and LEA Specialized algorithms

3 GIMLI Multi-purpose algorithms
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Satellite Phone Encryption

GSM Protocol (regular phone)

Cell phone communications in many countries (incl. Europe) are encrypted
with A5/1. A5/2 was used for products sold outside Europe (e.g. Irak).

Satphone Standards

For satellite phones, there are two competing standards: GMR-1 and
GMR-2, each with their own crypto.

Their crypto had to be reverse-engineered [DHW+12].
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Stream Cipher

κ

I

F X0

ϕ

k0

U X1

ϕ

k1

Stream Cipher

Key stream

κ: secret key

I : IV

Xi : internal state

F : initialization

U : state update function

ϕ: filter
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A5-GMR-1 (1/2)

Diagram of A5-GMR-1 (from [DHW+12]).

Internal state size: 82 bits; key size: 64 bits; IV size: 19 bits.
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A5-GMR-1 (2/2)

“Intuitive” characteristics of a LW algo

Intended for low-power devices

Very small internal state, very small key

LFSRs→ simple logic

Some operations are far cheaper than others.

Example

LFSR: a handful of XORs

Memory itself is expensive→ small state
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A5-GMR-2

Diagram of A5-GMR-1 (from [DHW+12]).

Internal state size: 68 bits; key size: 64 bits; IV size: 22 bits.
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Cryptanalysis

Are these algorithms secure?

No

In fact, A5-GMR-1 is based on A5/2!
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Name Things Reference Key IS IV A�. time

A5/1

Cell phones

[And94] 64 64 22 224
A5/2 [BBK08] 64 81 22 216

cmea † [WSK97] 64 16–48 – 232
Oryx [WSD+99] 96 96 – 216

A5-GMR-1 Satellite phones [DHW+12] 64 82 19 238.1
A5-GMR-2 [DHW+12] 64 68 22 228

Dsc Cordless phones [LST+09] 64 80 35 234

SecureMem. Atmel chips [GvRVWS10] 64 109 128 229.8
CryptoMem. 64 117 128 250

Hitag2 [VGB12] 48 48 64 235
Megamos Car key/ [VGE13] 96 57 56 248
Keeloq † immobilizer [BSK96] 64 32 – 244.5
Dst40 † [BGS+05] 40 40 – 240

iClass Smart cards [GdKGV14] 64 40 – 240
Crypto-1 [NESP08] 48 48 96 232

Css DVD players [BD04] 40 42 – 240
Cryptomeria † [BKLM09] 56 64 – 248

Csa-BC † Digital televisions [WW05] 64 64 – 264
Csa-SC 64 103 64 245.7

PC-1 Amazon Kindle [BLR13] 128 152 – 231

SecurID ‡ Secure token [BLP04] 64 64 – 244

E0 Anything [FL01] 128 128 – 238
RC4 [Nob94] 128 2064 – 232
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Why are they all broken?

Too small key

save space/export restriction

“Security through obscurity” doesn’t work

Overall bad design not cryptographers/old
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Lessons Learnt

Design

There are cases where a dedicated lightweight algorithm is used.

Implementation performance implies lower block/internal state size.

Usually only one functionnality/device.

Context

Cryptography is hard.

Export restrictions were a bad idea.

Old algorithms stay for a while.
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Targets

Hardware implementations are for
RFID tags, FPGA, hardware accelarators...
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Area

Power

Latency

Throughput

Gate Equivalent (GE)
Physical dye area

Wa�s
Ba�ery life...

Seconds
Time to output

bit/second
Data/time
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Implementation Strategies

Round-based

xi

R

Low Area

Higher Latency

(Partially) Unrolled
x0

xr

R

R

R

Low latency

High area
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Specific Algorithms

Although implementation trade-o�s are available, the
algorithm design itself can facilitate some properties.
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Description of Plantlet

Key size: 80 bits; Internal state size: 110 bits; IV size: 90 bits
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A Cipher for Low Area

Plantlet is a “fixed” Sprout.

LFSR/NLFSR→ very few gates.

f ,д,h carefully chosen

Small internal state (110 bits)

Key state is unchanged→ even fewer gates
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What Plantlet Illustrates

An algorithm can be tailored for a specific implementation optimization.

The perfect algorithm would allow any implementation trade-o� but in
practice:

optimal for niche , OK in most contexts

Plantlet, SKINNY... Low area.

PRINCE, Mantis... Low latency.

Midori... Low energy.

Zorro... Easy SCA counters.
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Description of LEA

Key size: 128/192/256 bits; Block size: 128 bits;
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Felics framework
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ARX

Highest ranking algorithms don’t use S-Boxes

Addition/Rotation/XOR (ARX)

“be�er” use of CPU instructions

not great in hardware

hard to study

And/Rotation/XOR

Less so�ware oriented

Also good in hardware

Can be easier to study

The algorithm design will allow/prevent implementation trade-o�s.

Optimizing for so�ware , Optimizing for hardware
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Lessons Learnt

Lightweight algorithms allow optimized implementations.

Optimizations criteria compete against one another, even at the
algorithm design level.

Benchmarking is hard.

Optimizing for so�ware , optimizing for hardware
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Designers’ Aims

CHES’17 [BKL+17]
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The Sponge Structure

r : rate ; c : capacity ; д: sponge permutation.

Sponge-based hash function (e.g. SHA-3).
There are many other sponge-based structures [BDPV12].
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Structure of GIMLI (2/2)

Picture from rump session

presentation corresponding to

http://ia.cr/2017/743
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Distinguisher against GIMLI

Gimli has 24 rounds. If Gimli22.5 is 22.5-round Gimli, then

x 7→ Truncate192
(
Gimli22.5 (x | | k )

)
is not a secure PRF (http://ia.cr/2017/743).

Unclear how it applies to sponge modes though.
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Many academic designs are broken

Zorro Idea: AES with fewer S-Boxes to ease masking... Di�erential
a�acks become possible.

KTANTAN Idea: build block cipher like stream cipher... Di�usion of
key information can be too slow.

iScream Idea: Identical S-Boxes on columns of state, identical
L-Boxes on rows... Highly structured round function +
sparse round constants = invariant subspace a�acks.
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Lessons Learnt

And/Rotate/XOR→ way to go for versatility

Sponge→ way to go for versatility

It is still cryptography→ proper ve�ing by the community is needed.
Practical a�acks against full-round primitives do happen!
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Importance of publication process

Performance vs. Security

Versatility vs. Specialization
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